

SCHEDA TECNICA POLISTIRENE ESTRUSO GIAS XPS

Prodotto da: BRIOTHERMXPS SRL

Sede legale: Sos.de Centura Bucuresti, Nr.6, Stefanestii de Jos, Ilfov, Romania

Indirizzo, sede operativa e corrispondenza: Sos.de Centura Bucuresti, Nr.6, Stefanestii de Jos, Ilfov, Romania

Sede produzione: Parc Industrial Mija, jud.Dambovita, Com. IL Caragiale, Sos.Ploiesti - Targoviste

Uso:

Isolamento di fondazione e muri interrati	Isolamento termico di pavimenti interni ed esterni
Isolamento termico di facciate degli edifici	Isolamento termico di pareti interne
Isolamento termico di tetti e terrazze	Isolamento termico di pali, travi e cinture
Fabbricazione di pannelli sandwich	Costruzione di celle frigorifiche

CRITERI DI PRESTAZIONE DEL PRODOTTO

Criteri di	Documenti di	UM	Livello di	Prestazioni prodotto
prestazione	riferimento		riferimento	(CLASSIFICAZIONE)
prestuzione			THE HICKORY	(02:1881116:12161:12)
		m²K/W	Min. 0,65	G=20mm
		111 1X/ VV	Max. 5,17	0,65 (GIAS XPS 300)
			(a seconda	G=30mm
			dello	0,90 (GIAS XPS 300)
			spessore)	G=40mm
				1,20 (GIAS XPS 300)
				G=50mm
				1,45(GIAS XPS 300)
				1,60(GIAS XPS 500)
				G=60mm
				1.85 (GIAS XPS 300)
				1.85(GIAS XPS 500)
				G=70mm
				2.05 (GIAS XPS 300)
				2.00 (GIAS XPS 500)
Dagistanas tamaias				G=80mm
Resistenza termica	SR EN			2,55(GIAS XPS 300)
	12667:2002			2,40(GIAS XPS 500)
	12007.2002			2.25 (GIAS XPS 700)
				G=100mm
				3.20(GIAS XPS 300)
				3,20 (GIAS XPS 500)
				2.75 (GIAS XPS 700)
				G=120mm
				3.85 (GIAS XPS 300)
				3.85 (GIAS XPS 500)
				G=140mm
				4.50 (GIAS XPS 300)
				4.89 (GIAS XPS 500)
				G=150mm
				4.85 (GIAS XPS 300)
				5.17 (GIAS XPS 500)
				G=160mm
				5.00 (GIAS XPS 300)
				5.00 (GIAS XPS 500)
Conducibilità		W/mk	Min. 0.027	G=20mm
termica (10 °C)		44/111K	Max. 0,036	0,030 (GIAS XPS 300)
				G=30mm
		(a seconda	0,032 (GIAS XPS 300)	
			dello	G=40mm
			spessore)	0,033 (GIAS XPS 300)
			·	G=50mm
				0,034(GIAS XPS 300)
				0,031(GIAS XPS 500)
				G=60mm
				0,032 (GIAS XPS 300)
				0.032 (GIAS XPS 500)
		•		

				G=70mm
				0,034 (GIAS XPS 300)
				0,035 (GIAS XPS 500)
				G=80mm
				0,031(GIAS XPS300)
				0,033(GIAS XPS 500)
				0.034 (GIAS XPS 700)
				G=100mm
				0,031(GIAS XPS 300)
				0,031(GIAS XPS 500)
				0.036 (GIAS XPS 700)
				G=120mm
				0.031 (GIAS XPS 300)
				0.031 (GIAS XI S 500) 0.031 (GIAS XPS 500)
				G=140mm
				0.031 (GIAS XPS 300)
				0.027 (GIAS XPS 500)
				G=150mm
				0.031 (GIAS XPS 300)
				0.027 (GIAS XPS 500)
				G=160mm
				0.031 (GIAS XPS 300)
				0.031 (GIAS XPS 500)
Determinazione	SR EN 1602	kg/m³	Min. 32	≥32
della densità				
apparente				
Resistenza alla			Per la classe	G=20mm
compressione, δ_{10}	SR EN 826:2013	kPa	CS	204,6 (GIAS XPS 300)
			(10/Y)	G=30mm
			200:≥200	374,3 (GIAS XPS 300)
			CS(10/Y)	G=40mm
			300:≥300	372,0 (GIAS XPS 300)
			CS(10/Y)	G=50mm
			400:≥400	409,8(GIAS XPS 300)
			(10/Y)	529,8(GIAS XPS 500)
			500:≥500	, , , , ,
			CS (10/Y)700	G=60mm
				489,1 (GIAS XPS 300)
				529.8 (GIAS XPS 500)
				G=80mm
				501,2(GIAS XPS 300)
				597,0(GIAS XPS 500)
				>=700 (GIAS XPS 700)
				G=100mm
				475,5(GIAS XPS 300)
			•	
				597,2(GIAS XPS 500)
				* *
				597,2(GIAS XPS 500) >=700(GIAS XPS 700) G=120mm
				>=700(GIAS XPS 700) G=120mm
				>=700(GIAS XPS 700) G=120mm >=300 (GIAS XPS 300)
				>=700(GIAS XPS 700) G=120mm >=300 (GIAS XPS 300) ≥ 500 (GIAS XPS 500)
				>=700(GIAS XPS 700) G=120mm >=300 (GIAS XPS 300) ≥ 500 (GIAS XPS 500) G=140mm
				>=700(GIAS XPS 700) G=120mm >=300 (GIAS XPS 300) ≥ 500 (GIAS XPS 500)

Resistenza alla trazione perpendicolare sulle facce SR EN1607:2013 KPa Per la classe TR200:≥200 SR EN1607:2013	ı	1			
Resistenza alla trazione perpendicolare sulle facce SR EN1607:2013 KPa Per la classe TR200≥200 320 3					G=150mm
Resistenza alla trazione perpendicolare sulle facce SR EN1607:2013 kPa Per la classe TR200:≥200 320					
Resistenza alla trazione perpendicolare sulle facce Assorbimento dell' acqua a lungo termine per la totale immersione SR EN 12087:2013 % Per la classe TR200:≥200 320				<u> </u>	
Resistenza alla trazione perpendicolare sulle facce SR EN1607:2013 KPa Per la classe TR200:≥200 SR EN1607:2013 KPa Per la classe TR200:≥200 SR EN1607:2013 SR EN12087:2013 SR EN12091:2013 SR EN12086:2013 SR EN12086:20					
Resistenza alla trazione perpendicolare sulle facce					
trazione perpendicolare sulle facce Assorbimento dell'acqua a lungo termine per la totale immersione Resistenza a gelo-disgelo attraverso: a) la determinazione della riduzione dello sforzo alla compressione δ ad 10 rispetto a δ 10 b) l'assorbimento dell'acqua dopo gelo-disgelo W√(% volume) +0,25% Per la classe di rezione dello sonzo per la condizioni specificate di carico alla compressione di di acqua (μ) Deformazione in condizioni specificate di carico alla compressione della dimensionale - variazione della larghezza - variazione dello spessore Classe di reazione SR EN 12087:2013 SR EN 12087:2013 SR EN 12087:2013 SR EN 12091:2013 SR EN 12086:2013 SR EN 12086:2013 SR EN 12086:2013 SR EN 12086:2013 Per la classe DLT(1) 5 ≤ 5 SE EN 1604:2013 SR EN 1604:2013					0.031 (GIAS XPS 500)
Perpendicolare sulle facce SR EN1607:2013 SR EN1607:2013 SR EN1607:2013 SR EN1607:2013 SR EN 12087:2013 SR EN 12091:2013 SR EN 12086:2013 SR EN 1				Per la classe	320
Per pendicolare sulle facce Assorbimento dell'acqua a lungo termine per la totale immersione SR EN 12087:2013 % WL(T) 0,7:≤0,7	trazione	SP EN1607-2013	kPa	TR200:≥200	
Assorbimento dell'acqua a lungo termine per la totale immersione Resistenza a gelodisselo attraverso: a) la determinazione della riduzione dello sforzo alla compressione δ_{ud} 10 rispetto a δ_{u0} 50 SR EN 12091:2013 % b. 0,13 for F12 class b) l'assorbimento dell'acqua dopo gelo-disgelo Wv (% volume) +0,25% Per la classe Fattore di resistenza a -0,23 -1,03 DS (70,90) 5 $\leq \pm 5$ Diffusione di vapore d'acqua (μ) Deformazione in condizioni specificate di carico alla compressione e di temperatura Stabilità dimensionale - variazione della larghezza - variazione dello spessore Classe di reazione Glassed i reazione dello spessore Classe di reazione SR EN Classe (Classe di reazione dello spessore Classe di reazione SR EN (Classe di reazione dello spessore Classe di reazione SR EN (Classe) FF (Classe di reazione dello spessore Classe di reazione SR EN (Classe) FF (Classe di reazione dello spessore Classe di reazione dello spessore con con control della compressore e di reazione dello spessore (Classe di reazione dello spessore) Classe di reazione della compressione e di reazione dello spessore (Classe di reazione dello spessore)	perpendicolare sulle	SK EN1007.2013			
dell'acqua a lungo termine per la totale immersione Resistenza a gelodisgelo attraverso: a) la determinazione della riduzione dello sforzo alla compressione $\delta_{\rm ud}$ 10 rispetto a $\delta_{\rm 10}$					
termine per la totale immersione Resistenza a gelodisgelo attraverso: a) la determinazione della riduzione dello sforzo alla compressione $\delta_{\text{ud} \mid 0}$ SR EN 12091:2013 % b. 0,13 for prispetto a δ_{10} b) l'assorbimento dell'acqua dopo gelo-disgelo Wv (% volume) +0,25% Per la classe Fattore di resistenza a -0,23 -1,03 DS (70,90) 5 $\leq \pm 5$ Diffusione di vapore d'acqua (μ) Deformazione in condizioni specificate di carico alla compressione e di temperatura Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessore Classe di reazione SR EN ≤ 0.37 Classe ≤ 0.18 Derivativa della sughezza - variazione dello spessore Classe di reazione ≤ 0.18 Classe ≤ 0.18 F	Assorbimento			Per la classe	0,165
termine per la totale immersione Resistenza a gelodisgelo attraverso: a) la determinazione della riduzione dello sforzo alla compressione δ_{ud} 10 rispetto a δ_{10} SR EN 12091:2013 % b. 0,13 for properties of δ_{ud} 10 properties of δ_{ud} 10 properties of δ_{ud} 10 properties of δ_{ud} 10 properties of δ_{ud} 21 properties of δ_{ud} 223,3 properties of δ_{ud} 233,3 pro	dell'acqua a lungo	SD EN 12097-2012	0/-	WL(T)	
Resistenza a gelodisgelo attraverso: a la determinazione della riduzione dello sforzo alla compressione $\delta_{ud \ 10}$ rispetto a δ_{10} rispetto a δ_{10} rispetto a δ_{10} rispetto a δ_{10} sorbimento dell'acqua dopo gelo-disgelo Wv (% volume) +0.25% Per la classe Fattore di resistenza a -0.23 -1.03 DS(70.90) 5 $\leq \pm 5$ Diffusione di vapore d'acqua (µ)	termine per la totale	SK EN 1208/:2015	%0	$0,7:\leq 0,7$	
disgelo attraverso: a) la determinazione della riduzione dello sforzo alla compressione $\delta_{\rm ud \ 10}$ SR EN 12091:2013 % b. 0,13 for rispetto a $\delta_{\rm 10}$ b) l'assorbimento dell'acqua dopo gelo-disgelo Wv (% volume) +0,25% Per la classe Fattore di resistenza a -0,23 -1,03 DS(70,90) 5 $\leq \pm 5$ Diffusione di vapore d'acqua (μ) Deformazione in condizioni specificate di carico alla compressione e di temperatura Stabilità dimensionale - variazione della lunghezza - variazione dello spessore Classe di reazione Classe di reazione SR EN 1604:2013 SR EN Classe Classe di reazione SR EN 605:2013 Per la classe DLT(1) 5 ≤ 5 ≤ 0.18 DS (70,90)5: ≤ 0.14	immersione				
a) la determinazione della riduzione dello sforzo alla compressione $\delta_{ud 10}$ SR EN 12091:2013 % b. 0,13 for rispetto a δ_{10} b) l'assorbimento dell'acqua dopo gelo-disgelo Wv (% volume) +0,25% Per la classe Fattore di resistenza a -0,23 -1,03 DS (70,90) 5 $\leq \pm 5$ Diffusione di vapore d'acqua (μ) Deformazione in condizioni specificate di carico alla compressione e di temperatura Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessore Classe di reazione Classe di reazione SR EN 1604:2013 % BR EN 1604:2013 % Fer la classe DLT(1) 5 ≤ 5 ≤ 0.18 DS (70,90)5: ≤ 0.14 ≤ 0.18 DS (70,90)5: ≤ 0.18	Resistenza a gelo-				
della riduzione dello sforzo alla compressione δ_{ud} 10 rispetto a δ_{10} 5R EN 12091:2013	disgelo attraverso:				
della riduzione dello sforzo alla compressione $\delta_{ud 10}$ rispetto a δ_{10} rispetto a δ_{10} rispetto a δ_{10} b) l'assorbimento dell'acqua dopo gelo-disgelo $W_v(k)_{volume}$ $+0,25\%$ Per la classe Fattore di resistenza a $-0,23$ $-1,03$ DS($70,90)$ 5 $\leq \pm 5$ Diffusione di vapore d'acqua (µ) Deformazione in condizioni specificate di carico alla compressione e di temperatura Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessore Classe di reazione Classe di reazione SR EN 12091:2013 % b. 0,13 for FT2 class $W_v < 1$ will a specificate $W_v < 1$ will				$a.2,8 \le 10\%$	a. 2,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	della riduzione dello			· ·	
rispetto a δ_{10} b) l'assorbimento dell'acqua dopo gelo-disgelo Wy (% volume) $+0.25\% \text{ Per la} \text{ classe Fattore di resistenza a} \\ -0.23 \\ -1.03 \\ DS(70,90) 5 \\ \leq \pm 5 \\ Diffusione di vapore d'acqua (\mu) $	sforzo alla				
rispetto a δ_{10} b) l'assorbimento dell'acqua dopo gelo-disgelo Wy (% volume) $+0.25\% \text{ Per la} \text{ classe Fattore di resistenza a} \\ -0.23 \\ -1.03 \\ DS(70,90) 5 \\ \leq \pm 5 \\ Diffusione di vapore d'acqua (\mu) $	compressione $\delta_{ud\ 10}$	SR EN 12091:2013	%	b. 0,13 for	b. 0,13
b) l'assorbimento dell'acqua dopo gelo-disgelo $W_{v}(\%)$ volume) $+0,25\%$ Per la classe Fattore di resistenza a $-0,23$ $-1,03$ $DS(70,90)$ 5 $\leq \pm 5$ Diffusione di vapore d'acqua (μ) Deformazione in condizioni specificate di carico alla compressione e di temperatura Stabilità dimensionale - variazione della lunghezza - variazione dello spessore Classe di reazione Classe di reazione SR EN 1604:2013 Win. 233,3 Min. 233,3 MU 2002 MU 2002 MU 2002 Per la classe DLT(1) 5 ≤ 5 Per la classe DS (70,90)5: ≤ 0.18 DS (70,90)5: ≤ 0.14				FT2 class	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\mathbf{w}_{\mathrm{v}} < 1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
classe Fattore di resistenza a $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	resistenza a				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Min.	233,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	GD EN 1200 (2012		MU 2002	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SR EN 12086:2013	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diffusione di				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	vapore d'acqua				
Deformazione in condizioni specificate di carico alla compressione e di temperaturaSR EN 1605:2013%Per la classe DLT(1) 5Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessoreSR EN 1604:2013Per la classe DS (70,90)5: ≤ 0.18 ≤ 0.14 $\leq \pm 5$ Classe di reazioneSR EN 1604:2013%					
condizioni specificate di carico alla compressione e di temperatura SR EN 1605:2013 % Per la classe DLT(1) 5 ≤ 0,19 Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessore SR EN 1604:2013 Per la classe DS (70,90)5: ≤ ± 5 ≤ 0.18 ≤ ± 5 SR EN 1604:2013 % SR EN 1604:2013 %					
specificate di carico alla compressione e di temperaturaSR EN 1605:2013%DLT(1) 5 \leq 5Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessoreSR EN 1604:2013Per la classe DS (70,90)5: \leq ± 5 \leq 0.18 \leq ± 5SR EN 1604:2013% \leq ± 5 \leq 0.37Classe di reazioneSR ENClasseF				Per la classe	
carico alla compressione e di temperatura ≤ 5 Stabilità dimensionale - variazione della larghezza - variazione dello spessore SR EN 1605:2013 Classe di reazione SR EN 1604:2013 SR EN 1605:2013 y ₆ SR EN 1605:2013 y ₆ SP EN 1605:2013 SP EN 1605:2013 y ₆ SP EN 1605:2013 SP		CD EN 1/05 2012	Δ/	DLT(1) 5	
compressione e di temperatura ≤ 5 Stabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessorePer la classe DS $(70,90)5$: $\leq \pm 5$ ≤ 0.18 ≤ 0.14 $\leq \pm 5$ SR EN 1604:2013 %%SR EN 1604:2013 F%	I =	SR EN 1605:2013	% 0	, ,	≤ 0,19
temperaturaPer la classe Oscillation ≤ 0.18 OscillationStabilità dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessoreSR EN 1604:2013 $\Rightarrow 0.18$ SR EN 1604:2013SR EN 1604:2013 SP EN $\Rightarrow 0.14$ $\Rightarrow 0.37$ Classe $\Rightarrow 0.18$ SE EN 1604:2013 SP EN 1604:2013 SP EN 1604:2013	compressione e di			≤ 5	_ ,
Stabilità dimensionale - variazione della lunghezza - variazione dello spessore Classe di reazione R SR EN 1604:2013 R Per la classe DS $(70,90)5$: ≤ 0.14 $\leq \pm 5$ ≤ 0.37	<u> </u>				
dimensionale - variazione della lunghezza - variazione della larghezza - variazione dello spessore $\frac{1}{2}$ SR EN 1604:2013 $\frac{1}{2}$ SR EN $\frac{1}{2}$ Classe				Per la classe	≤ 0.18
- variazione della lunghezza - variazione della larghezza - variazione dello spessore $\frac{1}{2}$ SR EN 1604:2013 $\frac{1}{2}$ % $\frac{1}{2}$	dimensionale			DS (70,90)5:	
lunghezza - variazione della larghezza - variazione dello spessore Classe di reazione SR EN 1604:2013 % F Classe	- variazione della				
- variazione della larghezza - variazione dello spessore Classe di reazione SR EN 1604:2013 % Classe F		CD EN 1604:0012	0/		
- variazione dello spessore Classe di reazione SR EN Classe	•	SK EN 1004:2013	%		
- variazione dello spessore Classe di reazione SR EN Classe	larghezza				
Classe di reazione SR EN Classe F					
Classe di reazione SR EN Classe F	spessore				
al fuoco 135011:2007+A1:2009 Ciasse Euro classe		SR EN	Classa		F
	al fuoco	135011:2007+A1:2009	Classe	Euro classe	

CERTIFICAZIONE:

I pannelli isolanti in polistirene estruso sono stati testati secondo quanto previsto dalla norma (SR) EN 13164:2012 + A1:2015, prove che hanno dimostrato che le prestazioni sono conformi al riferimento.

La marcatura di conformità CE è applicata sull'etichetta del prodotto e sui documenti di accompagnamento.

PRODOTTO TECNOLOGICO:

La produzione dei pannelli GIAS XPS si basa su un'espansione fisica (espansione) della plastica fusa nell'estrusore, dove la temperatura, la quantità di fuso e di agenti di espansione, D.M.E sono continuamente controllati. La struttura cellulare chiusa dei pannelli ottenuti attraverso questa tecnologia e gli additivi introdotti nell'impasto con il polistirene, determina caratteristiche tecniche superiori e durevoli, ovvero:

- Resistenza meccanica superiore
- Ridotta conducibilità termica
- Densità omogenea
- Alta resistenza all'umidità
- Resistenza alla diffusione del vapore
- Elasticità
- Resistenza ai cicli di gelo-disgelo
- Assenza di capillarità
- Speso specifico basso
- Facilità di taglio con attrezzi normali
- Resistenza alta al fuoco

QUALITÀ: secondo SR EN 13164+A1:2015

CONFEZIONE:

I pannelli in polistirene GIAS XPS sono confezionati sotto forma di pacchi composti da più pannelli, a seconda dello spessore del pannello. La confezione è realizzata in pellicola termoretraibile.

MARCATURA:

I pannelli in polistirene GIAS XPS sono marcati secondo SR EN 13164:2012 + A1:2015, etichettando la confezione con i seguenti dati:

- La denominazione del prodotto, la denominazione del produttore
- Il luogo, la data della fabbricazione
- La conducibilità termica
- Il codice d'identificazione secondo SR EN 13164+A1:2015
- La marcatura CE

TRASPORTO:

I pannelli in polistirene GIAS XPS possono essere trasportati con mezzi di trasporto puliti e coperti che garantiscano l'integrità del carico durante il trasporto. Non è consentito trasportare i pannelli di polistirene estruso insieme ad altri materiali che possano danneggiarli (diluenti, carburanti, vernici, materiali che possono muoversi durante il trasporto). Il carico non deve superare le dimensioni del mezzo di trasporto. Non è consentito fumare e lavorare con fiamme libere nel rimorchio caricato con pannelli di polistirene estruso.

GARANZIA:

I pannelli in polistirene GIAS XPS sono garantiti per un anno dalla data di produzione purché siano rispettate le condizioni di trasporto e stoccaggio.

NOTE:

- 1. Le caratteristiche di resistenza al fuoco e resistenza alla compressione sono rilevanti in conformità alle normative dichiarate dopo il periodo di maturazione.
- 2. I pannelli in polistirene estruso GIAS XPS non sono biodegradabili e non rappresentano un pericolo per l'acqua e il suolo.
- 3. I prodotti possono essere riciclati ma non devono essere mescolati con altri polimeri.
- 4. I pannelli sono conservati negli imballi originali, in locali puliti, ventilati, protetti da fonti dirette di calore e fuoco, da sostanze corrosive e oggetti duri e taglienti che possono danneggiare il prodotto.
- 5. NON UTILIZZARE le fiamme libere quando si utilizzano i pannelli GIAS XPS.

6. IMPORTANTE: durante il montaggio dei pannelli GIAS XPS (dopo la posa) sarà assicurata la loro protezione contro l'influenza dei fattori esterni. Un riscaldamento eccessivo dovuto all'esposizione diretta al sole può causare la deformazione dei pannelli di isolamento termico. Si consiglia l'applicazione immediata degli altri componenti del sistema.